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ARTICLE INFO ABSTRACT

Keywords: Spatial data analysis and prediction are fundamental in geoscience for mapping continuous variables and sup-
Spatial prediction porting decision-making. However, traditional geostatistical tools often require programming skills or involve
Geostatistics

manual, subjective steps. Here, we developed sGs UnMix, an interactive web application that simplifies spatial
prediction workflows and reduces subjectivity in statistical analysis, making it accessible to the entire geoscience
community. sGs UnMix (available online at https://apps.bo.ingv.it/sgs-unmix) is built with the shiny package for
R and is organized into four main panels, which allow data loading and coordinate projection, data separation
through mixture modeling, variogram modeling, and spatial prediction using sequential Gaussian simulation
(sGs). Automated variogram fitting and mixture modeling reduce user bias, while dynamically updated heat
maps enable real-time visualization of spatial patterns. sGs UnMix provides not only a standardized approach for
estimating volcanic volatile fluxes (e.g., soil CO, emissions) but also applications in ore deposit mapping, hy-
drocarbon exploration, environmental monitoring, and climatology. Compared to existing geostatistical tools, it
offers automation, interactivity, and a platform-independent, standalone web-based solution for geoscientists.

Soil CO2 flux
Shiny web application

1. Introduction

The statistical analysis of spatial data is crucial for understanding
spatial and spatiotemporal phenomena, playing an integral role across
various fields in geosciences. Many of the foundational techniques for
spatial data analysis were first developed in the context of mineral
resource exploration. One such technique, kriging, was pioneered by
Georges Matheron in the 1960s (Matheron, 1962, 1963), drawing
inspiration from the work of South African mining engineer Daniel Krige
(1951). Kriging is an interpolation technique widely used to estimate
values at unsampled locations based on spatially distributed data. It is
grounded in the concept of the variogram, which quantifies the spatial
continuity of the data as a function of distance, thereby providing a
mathematical framework for making spatial estimation and prediction
(Matheron, 1963a,b). However, kriging tends to produce smoothed es-
timates that underestimate spatial variability (Journel and Huijbregts,
1978). To overcome this limitation, more sophisticated techniques, such
as Sequential Gaussian Simulation (sGs from now on), have been
developed (Journel and Alabert, 1989). sGs preserves both the variance
and spatial continuity of the data by incorporating multiple realizations
of spatially distributed values, making it more suitable for spatial
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prediction (Pyrcz and Deutsch, 2014).

Spatial prediction using sGs has found applications far beyond
mining, becoming essential in reservoir modeling and several soil-
science related fields, including environmental science, climatology,
agriculture, public health, hydrology, and natural resource manage-
ment. In environmental science, sGs has been applied to model the
distribution of soil contaminants, such as cadmium, providing more
realistic risk maps (Goovaerts, 1997). In agriculture, sGs has been used
to map soil nutrients, such as potassium (Webster and Oliver, 2007),
enabling precision farming practices and better resource management.
Mapping of soil properties with sGs, such as pH, has been also performed
to study the effect of urbanization on land (Sun et al., 2013). Public
health applications include predicting heavy metal concentrations in
topsoil and calculating the carcinogenic health-risk level for each node
of the grid (Ozen et al., 2022). sGs has been applied in hydrology to map
the soil water content to identify areas prone to surface runoff and
erosion (Delbari et al., 2009) and in petroleum reservoir modeling to
estimate porosity and permeability for hydrocarbon recovery (Pyrcz and
Deutsch, 2014).

Spatial prediction using sGs has also become indispensable for vol-
cano monitoring and geothermal exploration, especially for mapping
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soil CO5 fluxes (Cardellini et al., 2003). As CO is the second most
abundant gas emitted by volcanoes (after Hy0), and a significant portion
of it escapes through soil diffusion (Fischer et al., 2019; Werner et al.,
2019), accurate measurements and spatial prediction is essential for
quantifying volcanic CO5 emissions and understanding the degassing
extent. Furthermore, the spatial correlation between soil temperature
and CO; flux maps constructed with sGs has proven particularly useful
for locating upflow zones in geothermal systems, providing a valuable
tool for geothermal energy exploration (Chiodini et al., 2005, 2021a).
Cardellini et al. (2003) first applied sGs to soil CO, emission data to map
volcanic structures, such as faults and craters, which serve as pathways
for gas escape, and estimate CO2 emissions from various volcanoes,
including Campi Flegrei (Italy), Vesuvius (Italy), and Nisyros (Greece).
Despite its advantages, sGs has not been entirely adopted within the
volcanological and geological communities, mainly due to the solid
understanding of geostatistical principles needed. As a result, interpo-
lation methods like inverse distance weighting (IDW) or kriging have
sometimes been preferred (e.g., Carapezza et al., 2011; Tarchini et al.,
2019; Gurrieri et al., 2023; Taussi et al., 2023; Tardani et al., 2024).
Although these methods find useful applications in some circum-
stances—e.g., IDW is commonly used when data do not show spatial
correlation (i.e., the variogram only displays the nugget effect)-, they
fail to accurately reproduce data variance and spatial continuity, leading
to the underestimation of volcanic CO; flux and degassing extent (e.g.,
Lewicki et al., 2005). This inconsistent application of methods un-
derscores the need for a standardized approach to processing soil CO5
emission data, ensuring that total flux estimates are comparable across
different volcanoes.

While open-source geostatistical software packages such as GSLIB
(Deutsch and Journel, 1998) offer powerful tools for spatial modeling,
they can require programming knowledge in languages like Fortran,
Python, or R. Even graphical user interface (GUI)-based tools, while
somewhat more user-friendly, can be cumbersome for those without a
deep understanding of geostatistics. Additionally, many of these plat-
forms lack automated features, such as auto-fitting variograms, which
introduces operator subjectivity and can affect the accuracy of results.
These barriers have made advanced geostatistical tools, including sGs,
inaccessible to part of the geoscience community. To address these
challenges, we developed sGs UnMix, a user-friendly, interactive web
application that simplifies the process of spatial prediction using sGs.
While the app does not eliminate the need for critical interpretation, it is
designed to guide users—regardless of programming experience—-
through the modeling process in an intuitive and transparent way,
helping them to better explore and valorize their datasets. The web app
is structured around five interactive panels, guiding users from data
upload to the generation of mean and probability maps. Users can
choose between an automated variogram fitting procedure based on
least-squares or a manual adjustment, with real-time updates displayed
on variogram and density plots. The app also provides interactive maps
overlaid on GIS-layers, enabling users to visualize the spatial distribu-
tion of predicted values, identify anomalies, and gain deeper insights
into the processes underlying spatial data patterns. This tool offers a
faster, more intuitive approach to decision-making in resource explo-
ration, volcano monitoring, environmental risk assessment, and beyond.

2. Methods

sGs UnMix has been designed with shiny (https://shiny.posit.co), an
online platform that enables the creation of web applications based on
the R programming language (https://www.r-project.org). sGs UnMix is
available online at https://apps.bo.ingv.it/sgs-unmix. The web app is
based on four modulus, and each of these relies on fundamental concepts
of geostatistics needed to unmix different populations of data within the
total spatial distribution, modeling the spatial continuity of the data
with the variogram, and performing spatial prediction with sGs. To these
scopes, sGs UnMix uses several R packages, which are listed in Table 1.
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Table 1
R packages used by sGs UnMix.
R Package Authors Link
shiny Chang et al. (2024) https://cran.r-project.org/package=sh
iny
sp Pebesma and Bivand https://cran.r-project.org/package=sp
(2005);
Bivand et al. (2013)
splancs Rowlingson and Diggle https://cran.r-project.org/package
(2024) =splancs
fields Nychka et al. (2021) https://github.com/dnychka/field
sRPackage.
raster Hijmans (2024a) https://cran.r-project.org/package=ra
ster
terra Hijmans (2024b) https://cran.r-project.org/p
ackage=terra
gstat Pebesma (2004) https://cran.r-project.org/p
ackage=gstat
leaflet Cheng et al. (2024) https://cran.r-project.org/package=le

aflet
https://cran.r-project.org/package=1
eaflet.extras

leaflet.extras Gatscha et al. (2024)

leaflet. Huang (2023) https://cran.r-project.org/package=le
providers aflet.providers
DT Xie et al. (2024) https://cran.r-project.or
g/package=DT
mixtools Benaglia et al. (2009) https://cran.r-project.org/packa

ge=mixtools

2.1. Unmixing lognormal populations of data

The distribution of the variable we want to predict at unsampled
locations in the space can reflect the mixing of two or more populations
of data, potentially indicating different data sources. For example, soil
CO, flux data often reflect the overlapping of two lognormal pop-
ulations, characterized by low and high flux values, reflecting the
background, biogenic gas release and the magmatic-hydrothermal CO,
coming from depth. Unmixing of these populations has been treated in
the literature with the method of Sinclair (1974), which was used in the
Graphical Statistical Approach (GSA; Chiodini et al., 1998) to disen-
tangle biogenic and magmatic soil CO, flux populations and compute
the respective total emission into the atmosphere (t d™). In sGs UnMix,
we implemented the normalmixEM function of the mixtools package for
R (Benaglia et al, 2009). This function wuses an
Expectation-Maximization (EM) algorithm, which alternates between
estimating the probability of each data point belonging to each popu-
lation (E-step) and updating the parameters describing each population
(means, variances, and mixing proportions) to maximize the likelihood
(M-step). This iterative process is able to automatically separate the data
into two or more individual populations. In case of lognormal pop-
ulations, sGs UnMix then uses a Monte Carlo simulation to calculate the
mean and standard deviation of each population (e.g., Chiodini et al.,
2015). In particular, this process involves drawing a random sample,
equal in size to the original dataset, from each population identified by
the EM algorithm. Each value in the sample is raised to the power of 10,
and the average of these transformed values is computed. This operation
is repeated 5000 times, generating 5000 mean values. From these, the
overall mean and standard deviation of the population are calculated.

2.2. Modeling the spatial continuity of the data with the variogram

Since spatial prediction is performed through sGs, sGs UnMix first
transforms the data from real space to Gaussian space. All the following
calculations are performed on the transformed data. The spatial conti-
nuity of the data is measured through the semivariance (Matheron,
1963a,b)

N(h)
1) = s 2 (2(e) — 2 + ) M
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which expresses half of the average squared difference of values sepa-
rated by a distance equal to h, the lag distance, where z(u,) is the value
at location a and N(h) is the number of pairs for lag distance h. The lag
distance is automatically calculated by taking into account the geometry
of the grid (Pebesma, 2004), but it can also be manually chosen to ensure
a variogram calculation with a large number of pairs for each lag. sGs
UnMix uses the variogram function of the gstat package (Pebesma, 2004)
and plots not only the variogram (Fig. 1) but also the variogram cloud
that represents all the possible square differences of values separated by
distance h. This diagram can be particularly informative in locating
potential outliers showing high semivariance at short distances, which
results in a significant nugget effect, affecting the spatial continuity of
the data (see Example #2 in the Supplementary Material). In such cir-
cumstances, a robust variogram estimator is preferred (Cressie, 1993)

N(h)
3w 2
r(h)=

The spatial continuity of the data is then modeled by fitting the
empirical variogram with a specific variogram model (Table A.1) that
minimizes a weighted sum of squared errors (SSE; Pebesma, 2004)

S w3 (h) - 1(h)’ @

2(Uy) — 2(Uy + h))

)
0.457 + G

where j is the number of lag distance at which y(h) is calculated, wj is the
weight equals to N(h)]-/hf, and 7(h) is the semivariance of the fitted
variogram model. For this operation, sGs UnMix uses the fit.variogram
function of the gstat package (Pebesma, 2004) and returns the calcu-
lated nugget, range, and sill, which reflect the structure of the variogram
model (Fig. 1). Such components may be adjusted in sGs UnMix by
switching from automatic to manual mode.

2.3. Spatial prediction through sequential Gaussian simulations (sGs)

sGs UnMix incorporates the variogram model to perform spatial
prediction through sGs using the krige function of the gstat package
(Pebesma, 2004). The transformed data are distributed over the grid,
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Fig. 1. Empirical variogram (circles) and spherical variogram model (solid
line) fitted through weighted least squares. The variogram model is composed
of a nugget, sill, and range. The nugget is the semivariance at zero distance,
accounting for measurement errors or spatial variation at scales smaller than
the sampling distance. The range is the distance beyond which observations are
no longer correlated. The sill reflects the total variance, where the spatial
correlation ceases-typically at the range. In this example, the nugget and sill are
0.23 and 1, respectively, and the range is 310 m.
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and a random path is defined. The algorithm searches for 40 nearby
measured and previously simulated data at each location along this
path. These data are processed with ordinary kriging, an interpolation
technique that relies on linear weights attributed to the data, which
account for spatial continuity, data closeness, and redundancy. Ordinary
kriging (OK) was chosen over simple kriging (SK) because it does not
assume a known global mean, instead estimating the local mean from
neighboring data. This is advantageous for datasets where the mean
varies spatially or is poorly known, such as CO5 emissions from volcanic
soils. This step enables the algorithm to construct a normal distribution
with a mean equal to the kriging estimate and variance equal to the
kriging variance. The simulated value is drawn from this normal dis-
tribution with a Monte Carlo simulation and added to the random
location of the grid. Extracting the simulated value from this distribution
accurately reproduces the data variance, which would be under-
estimated if we relied solely on the kriging estimate. This procedure is
then repeated across all locations of the random path, progressively
including the simulated values in the simulations. By considering pre-
viously simulated values as data, the algorithm preserved the covariance
structure of the entire dataset. After all grid nodes are populated with
simulated values, all the data are back-transformed to the real space,
producing the first realization. The algorithm repeats this procedure for
n realizations, following a different random path each time, resulting in
different simulated values. All realizations are equiprobable, and aver-
aging them provides an estimate of uncertainty.

3. sGs UnMix data processing

sGs UnMix can be used online at https://apps.bo.ingv.it/sgs-unmix.
It consists of five tab panels: Load data, Data, Mix model, Variogram, and
sGs. The Data panel shows data in a table on the left and a summary and
histogram of a selected variable on the right. The remaining four panels
consist of a left sidebar for inputs and a large main area for outputs, such
as figures and tables. The sidebars contain several fields and a Help
button showing a brief description to guide the user.

3.1. Load data tab panel

In the sidebar of this panel (Fig. 2), the user needs to upload a .csv file
with coordinates (longitude and latitude) and a continuous variable,
separated by comma, semicolon, or tab. The choice of separator needs to
be made before uploading the file. To ensure user privacy, all uploaded
data are processed locally and are not stored on any server; data are
automatically discarded when the session ends or the browser is
refreshed. Then, through the Select columns field, the user must specify
the longitude, latitude, and the continuous variable (in this order) used
for spatial prediction. The geodetic datum of the coordinate system must
be specified as an EPSG code (available at https://epsg.io). If longitude
and latitude are decimal WGS84, only the Output EPSG field has to be
filled with the corresponding EPSG code. Otherwise, if the coordinates
are not decimal WGS84, only the Input EPSG field must be compiled. The
spatial points are plotted on a GIS layer (Esri World Imagery by default)
and colored with a viridis gradient to have a first glance at the spatial
variability of the data (Fig. 2a). The color scale can be switched from
logarithmic to raw data through a radio button in the panel on the right
side of the map, along with others color palette. The user can navigate
into the interactive world map and choose the preferred GIS-layer be-
tween ESRI World Imagery and OpenStreetMap through a layer selec-
tion button on the left side of the map. In addition, one can measure
distances or areas through the rectangle above the layer selection on the
left side of the map. Last, the user has to draw a perimeter on the map to
enclose the data to process (Fig. 2b). This can be done by drawing a
rectangle or a polygon through the buttons below the layer selection.
Alternatively, a .csv with the vertices of a polygon can be uploaded (and
downloaded). The Remove polygon button can remove the uploaded
polygon to define a new perimeter.
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Fig. 2. Screenshot of the Load data tab panel of sGs UnMix showing (a) soil CO5, fluxes (in g m~2 d ') from Campi Flegrei (Italy) over the ESRI World Imagery layer

and (b) the polygon drawn to enclose data for spatial analyses.
3.2. Mix model tab panel

This panel (Fig. 3) enables the total density distribution of the data to
be unmixed into two or more individual populations, which could reflect
different data sources. By default, the sidebar panel is set on an automatic
fitting procedure, that is sGs UnMix considers the distribution of the data
as made by two lognormal populations and their means, standard de-
viations, and proportions are calculated using the EM-algorithm by
maximizing the log-likelihood (section 2.1). Data distribution can be

changed from lognormal to normal, enabling one to work with negative
values. The user can change the Number of populations in automatic mode
or can decide to manually fit the distribution by switching to Manual fit
and specifying the parameters defining each individual population in the
Mean and St. dev. fields, and pressing the Calculate populations button.
Alternatively, the user can specify initial parameters using the Initial
Guess mode, which is then accommodated by the web app to find the
best solution. The log-likelihood output in the sidebar panel provides a
measure of the goodness of fit, whose higher the value, the better the fit.
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Fig. 3. Screenshot of the Mix model tab panel of sGs UnMix showing the unmixing of the data enclosed within the polygon (Fig. 2b) into two lognormal populations.
These two populations returned from the automatic unmixing mode are plotted in density and Q-Q plots, and their means and standard deviations are plotted at the
bottom of the sidebar. Lambda refers to the proportion of each population contributing to the total data distribution.

To help select the proper number of populations while avoiding over-
fitting, the user can calculate information criteria, such as the Akaike
Information Criterion (Akaike, 1973). The parameters defined for each
population are printed at the bottom of the sidebar and the results are
displayed in the main area of the tab panel as density and Q-Q (Quan-
tile-Quantile) plots. The Q-Q plot is a graphical tool used to compare the
distribution of a dataset to a theoretical distribution. A single normal
distribution appears as a 45° line in the Q-Q plot, whereas n normal
populations result in n lines combined by n-1 inflection points. Both
density and Q-Q plots can be downloaded as PDF by selecting the Save
Plot as PDF button.

3.3. Variogram tab panel

The spatial continuity of the transformed data is modeled in this
panel (Fig. 4), which is divided in two subpanels for modeling both
omnidirectional (Fig. 4a) and anisotropic variograms (Fig. 4b). By
default, the variogram is omnidirectional and calculated using a
spherical model through an autofitting procedure, which is based on the
minimization of a weighted sum of square residuals (section 2.2). Re-
sults are displayed as a table and variogram and variogram cloud in the
main area of the tab panel (Fig. 4a). The user is required to choose a
model from the variogram model field (see Figure A.1 and Table A.1 for a
list of the available models) that minimizes the weighted sum of squared
errors (SSE, printed in the sidebar), which provides a measure of the
goodness of fit. The automatic lag distance is calculated using a formula
depending on the density of the data over the grid and its geometry
(principal diagonal of the polygon divided by 45; Pebesma, 2004) and is
printed in the sidebar panel. The app uses it as a starting input. Then, the
average distance at which semivariances are calculated and the
respective number of pairs (N(h)) used are displayed in the table on the
right side of the main panel. If the number of pairs (N(h)) for the lag
distance (h) is small (N(h) > 30 is recommended; Journel and Huij-
bregts, 1978), the user can manually insert it in the Lag distance field
while remaining in autofit mode. If outliers exist within the data set, the
variogram cloud shows data clusters with high semivariance at short
distances. These outliers would drastically raise the nugget of the var-
iogram. In such a case, the user is advised to enable the Robust variogram
field or manually remove the outliers (see Example #2 in the Supple-
mentary Material). Finally, the user can manually fit the variogram by
switching from the Automatic to Manual fit field and adjusting the

structure of the variogram by providing numeric inputs into the Nugget,
Partial sill, and Range fields in the sidebar. The variogram plots are
reactive to changes in the input of the variogram parameters, updating
the empirical variogram fit in real-time. In addition to modeling a single
variogram, the app offers a Nested option that allows users to model data
structures resulting from the sum of two variograms. As for the Single
selection, the Nested option supports both Automatic and Manual modes.
Both table and variogram plot can be downloaded as .csv and PDF,
respectively, by clicking the Save Table as CSV and Save Plot as PDF
buttons.

The anisotropic subpanel (Fig. 4b) allows users to model directional
variograms in manual mode. By default, N (0°), NE (45°), E (90°), and SE
(135°) directions are selected. A variogram map is plotted in the main
panel to help identify preferential directions, which can then be entered
into the Direction input field (separated by commas). Variograms
computed along these four directions (using an angle tolerance of 22.5°)
are displayed below the variogram map. Users must specify the principal
direction (Main dir), defined as the direction with the largest range, and
the anisotropy ratio (Ratio), calculated as the ratio between the range in
the direction perpendicular to the principal direction (minor range) and
the range in the principal direction (major range). By default, Main Dir is
set to 45° and Ratio is set to 0.4. Finally, the variogram parameter-
s—nugget, partial sill, and range (defined with respect to the main
direction)—has to be adjusted to minimize the Sum of Squared Errors
(SSE).

An example of directional variogram modeling is provided in the
Supplementary Material (Example #4). This example also demonstrates
the modeling of nested variograms.

3.4. sGs tab panel

This panel enables the user to perform spatial prediction through
sequential Gaussian simulation (sGs; section 2.3; Fig. 5). The sidebar of
this panel shows a summary of the grid extent in m (X min, X max, Y min,
and Y max fields), the extent of the cell (in m) over which perform sGs
(Delta X and Delta Y fields), and the Number of simulations field. By
default, the cells have 10 x 10 m spacing, and the algorithm performs
100 sGs, but the user can adjust these values as desired. Once these
parameters have been set up, the simulations start by clicking the Run
sGs button. After a few seconds, the result is plotted in the main panel as
a heat map of the mean values of the n number of simulations,
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Fig. 4. Screenshot of the Variogram tab panel of sGs UnMix showing the (a) omnidirectional and (b) anisotropic subpanles. (a) The omnidirectional subpanel shows
the variogram and variogram cloud of Campi Flegrei soil CO, fluxes, automatically fitted with a pentaspherical model through weighted least squares. (b) The
anisotropic subpanel shows the variogram map and the variograms calculated along the N, SE, E, and SW directions (0°, 45°, 90°, and 135°).
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Fig. 5. Screenshot of the sGs tab panel of sGs UnMix showing the (a) mean and (b) probability heat maps of Campi Flegrei soil CO; fluxes returned by averaging 200
sGs. The total soil CO, emission from Campi Flegrei has been calculated through the Calculate 2D integral button at the bottom of the sidebar, accounting for 1398 +

120 td~ .

overlaying a GIS-based layer (Esri World Imagery by default). The user
can then change the color scale (on the right side of the map) or adjust its
minimum and maximum values and the transparency of the heat map by
adjusting the Z min, Z max, and Opacity fields in the sidebar and clicking
the button with the eye icon. These adjustments can improve the
localization of the spatial distribution of patterns and their relationship

with the area morphology, helping to understand possible sources and
the processes driving spatial anomalies. This panel also enables calcu-
lating the selected variable double integration over the area defined in
the Load data panel and its uncertainty, which are printed at the bottom
of the left side panel after pressing the Calculate 2D integral button. These
values reflect the mean and standard deviation of the outputs estimated
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for each n equiprobable realizations generated by sGs. In the case of soil
COs, flux data, or any other input variable measured in g m~2 d_l, sGs
UnMix returns the total output and its standard deviation in g d™. In
addition to a mean heat map, sGs UnMix calculates both error and
probability heat maps. The error heat map shows the standard deviation
calculated for each cell across the n number of simulations. The proba-
bility heat maps indicates the likelihood that the target variable exceeds
a specific threshold, which must be entered in the probability threshold
field before clicking the run sGs button. To help choose the threshold, the
user can inspect the populations disentangled from the total data dis-
tribution in the Mix model tab. The user can visualize the error or
probability heat maps by clicking the corresponding button with the eye
icon and adjust the color scale and opacity as for the mean heat map.
Finally, the Save raster button allows downloading mean, error, and
probability heat maps as Tagged Image File Format (TIFF) for further
elaborations on GIS software.

4. A case study: soil CO5 emission from Campi Flegrei, Italy

The Neapolitan area of Italy is populated by about four million
people and includes three active volcanoes: Campi Flegrei, Somma-
Vesuvius, and Ischia. This volcanic area has shown activity for at least
the past 50,000 years, characterized by two significant eruptive events
forming a ~15-km-wide caldera (Acocella et al., 2015). Since 2006,
Campi Flegrei has shown increased seismicity, ground deformation, and
degassing, reflecting a phase of volcanic unrest (Chiodini et al., 2021b).
Hence, the measurement of the soil CO5 fluxes is fundamental to
monitoring its activity (e.g., Cardellini et al., 2017) and has been part of
the monitoring program of the Istituto Nazionale di Geofisica e Vul-
canologia (INGV) since 1998.

In this example, we used the soil CO3 fluxes measured during one of
these campaigns in July 2000 (cf july2000.csv in the Supplementary
Material; from Cardellini et al., 2017) in the target area of Campi Flegrei,
which includes the Solfatara di Pozzuoli, a tuff cone where the onshore
degassing focuses. In the sidebar of the Load data panel (Fig. 2), we
specified comma as separator, uploaded the cf july2000.csv, and
selected the x, y, and CO2flux variables of the data set. Since the co-
ordinates are in WGS84 and derived from the ED50 system rather than
decimal format, we provided the corresponding EPSG: 23033 in the
input EPSG. After this configuration, the measured points are plotted on
the ESRI World Imagery layer and color coded with a gradient from
purple to yellow as the CO, flux increases (Fig. 2a). High flux mea-
surements mainly concentrate in the Solfatara (grey area), with some
also found in the northeast and southeast regions (Fig. 2a). Finally, we
drew a polygon that tightly enclosed the measured data (Fig. 2b) over
which the spatial prediction had to be performed.

The Mix model panel shows the distribution of the data enclosed
within the polygon in density (black curve) and Q-Q plots (black circles;
Fig. 3). The automatic fit reproduces this distribution through the mix-
ing of two lognormal populations (red and green curves; Fig. 3). The
low-CO;, flux population (red curve) has an average value of 25.6 + 1.7
g m~2 d’l, contributing for the 61 % of the distribution (Fig. 3), whereas
the high-CO; flux population (green curve) contributes for the 39 % of it,
with an average value of 4181 + 1310 g m~2 d~!. Notably, these esti-
mates closely match those obtained by Cardellini et al. (2017)-23.9 +
1.50 gm 2 d! (61 %) and 4590 + 1351 g m 2 d~! (39 %)-by using a
manual fitting based on the method of Sinclair (1974), demonstrating a
strong concordance between the two approaches. The low-CO; flux
population reflects the background emission from the soil, produced by
biogenic activity, whereas the high-CO, flux population mainly reflect
the volcanic CO; exsolved at depth from magmas. This step is funda-
mental to discriminating the sources of CO, and quantifying their
average values (Chiodini et al., 1998), which can be used in the
following steps to correct the volcanic output from nonvolcanic CO5
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contributions. In addition, the unmixing of populations helps us define
the thresholds for the probability heat map calculation (Cardellini et al.,
2003) and, hence, better constrain the spatial distribution of the sole
volcanic CO, degassing. To this end, we can use as threshold 50 g m 2
d~!, which corresponds approximately to the 90th percentile of the
biogenic population. We can then calculate the probability of a value to
be higher than this threshold, hence only considering the volcanic CO,
emission — less than 10 % of the data belong to the biogenic population.
It is important to underscore that there is not a standardized procedure
to define thresholds above which calculating probability heat maps.
Cardellini et al. (2003) indicated threshold values around the 90th
percentile of the low-CO; flux population. However, the only effective
method to quantify the actual biogenic CO; flux relies on the analyses of
the C isotopes of the CO, (Chiodini et al., 2008; Bini et al., 2020; Viveiros
et al., 2020). In fact, biological processes produce CO, with very nega-
tive values of C isotopes, which can be unequivocally distinguished from
those produced by magmatic outgassing. In this respect, it is noteworthy
that the biogenic threshold of 50 g m 2 d~! defined here corresponds to
that estimated by Chiodini et al. (2008) for Campi Flegrei using C
isotope analyses of COs.

The variogram panel (Fig. 4a) displays the spatial continuity of the
soil CO5 flux data measured in July 2000, which is autofitted using a
pentaspherical variogram model with nugget = 0.2, partial sill = 0.8,
and range = 354.8 m. This variogram model is slightly different than
that employed by Cardellini et al. (2017)-spherical model with nugget
= 0.26, partial sill = 0.74, and range = 330 m-but it better fits the
empirical variogram, that is, the SSE is lower. The number of pairs (145)
calculated at the first lag distance (28.3 m) is sufficient to ensure a
reliable estimate of the semivariance. Hence, we used the provided Auto
Lag distance (35.5 m) without manually increasing it in the Lag distance
field (Fig. 4a). The variogram cloud does not show any cluster at short
distances (Fig. 4a)—distances less than the first lag—indicating poten-
tial outliers. In addition, the variogram map (Fig. 4b) does not exhibit
clear anisotropy, suggesting that the omnidirectional variogram is an
appropriate choice. Therefore, we proceed to the spatial prediction step.

To predict soil CO; fluxes at unsampled locations of Campi Flegrei,
we used cells of 5 x 5 m (Delta X and Delta Y) and 200 simulations
(Fig. 5). In addition, we set the probability threshold at 50 g m~2d 2, as
estimated in the Mix model panel. Fig. 5a shows the map of the predicted
soil CO4, fluxes over the ESRI World Imagery layer, where we set a color
scale ranging from 20 to 1000 g m~2 d™! (Z min and Z max) and a
transparency (Opacity) of 0.6. The total emission of CO, calculated by
sGs UnMix accounted for 1398 = 120 t d~! (from 1,22 km?) in July 2000
and most of the degassing spatially distributed over the Solfatara area
(Fig. 5a). Two other anomalies are also present in the southeast and
northeast areas of the map (Fig. 5a), in correspondence of the Pisciarelli
area, which, as Solfatara, is characterized by emission of hydrothermal
fluids from argillic, altered soil through diffusion and as fumarolic vents.
Both spatial distribution and total output of the soil CO5 emission esti-
mated with sGs UnMix are practically identical to those reported by
Cardellini et al. (2017). By adopting the parameters used by these
authors-square polygon (cf July2000_polygon_Cardellini_et_al 2017.
csv), spherical variogram model with nugget = 0.26, partial sill = 0.74,
and range = 330 m, and 100 sGs over 10 x 10 m cells-sGs UnMix yielded
an estimate of 1501 =120 td ™}, compared to 1513 + 146 t d! reported
by Cardellini et al. (2017). To better understand the spatial distribution
of the volcanic outgassing and better constrain the extent of different
structures, we can switch to the probability heat map visualization
(Fig. 5b). In this case, Fig. 5b shows the probability of soil CO5 flux
higher than 50 g m~2d! (from 0 to 1), that is the threshold defined
using the 90th percentile of the biogenic population defined in the Mix
model panel.

To estimate the volcanic emission of CO,, we multiplied the average
value of the biogenic population of soil CO5 flux data (25.6 g m™2d 1)
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by the area of the grid (1,216,425 mz), and subtracted it (31.1 td™ D)
from the total emission, resulting in 1367 + 120 t d~!. Finally, we
downloaded the raster from sGs UnMix. By processing rasters in GIS
softwares and incorporating structural features like faults and craters,
one can investigate the control of these on the soil CO5 flux (e.g. Fig. 4 in
Cardellini et al., 2017).

Further examples of spatial data processing with sGs UnMix are re-
ported in the Supplementary Material. The first example shows a case of
zinc pollution in the topsoil of a flood plain of the river Meuse, using the
meuse dataset of the sp package for R (Pebesma and Bivand, 2005;
Bivand et al., 2013). The second and third examples illustrate the pro-
cessing of other soil COy flux datasets. In particular, the Krafla case,
Iceland (Bini et al., 2024), shows an example of how to deal with the
presence of outliers by choosing robust variograms or removing them
and how to manually unmix data populations. The case of the Nisyros
caldera, Greece (Bini et al., 2019), shows how to search for different
populations of data when the total distribution appears to follow only
one lognormal distribution. In addition, this case provides a good spatial
distribution of different structures of volcanic degassing that contribute
to the total CO3 emission. The fourth example shows heat maps of CO,
soil emission from Latera, Italy (Chiodini et al., 2007), constructed using
both nested and anisotropic variogram models.

5. Discussion

Through a straightforward four-step procedure, we developed an
intuitive application to process spatial data and predict their distribution
at unsampled locations across space. These steps are implemented in
four interactive panels, which, helped by detailed descriptions, guide
users through loading datasets and reprojecting coordinates, separating
different data populations, modeling spatial continuity through vario-
grams, and performing spatial predictions using sequential Gaussian
simulations (sGs). Each panel has a left sidebar for input parameters and
a central display area for output visualizations, such as plots and tables,
which face the user to a user-friendly, interactive graphical interface.
Tables and plots, such as variograms and maps of predicted values
overlaid on GIS-layers, dynamically update in response to changes in
input values. Additionally, the application allows users to download
tables, high-resolution graphs suitable for scientific publications, and
raster files compatible with GIS software like QGIS (https://qgis.org).

A key advantage of sGs UnMix is its automated approach to data
population separation and variogram fitting. This implementation not
only reduces the users’ subjectivity in statistical analysis, such as
determining data sources and thresholds or mapping the spatial distri-
bution of continuous variables, but also enhances the reproducibility of
results. However, in some cases—such as when some populations are not
automatically detected (see Example #2 in the Supplementary Material)
or when variogram fitting overestimates data variance (i.e., when the sill
exceeds 1)—it may be beneficial to provide users with a higher degree of
control. This can be easily accomplished with sGs UnMix by switching
from automatic to manual mode in the Mix model and Variogram panels.

The most significant advantage of sGs UnMix is that it does not
require programming skills, software installation, or a high-performance
computer, making it accessible to the broader geoscience community
through an internet connection. This web app is a valuable alternative
for variogram modeling and spatial prediction, comparable to other
available codes such as FORTRAN (GSLIB; Deutsch and Journel, 1998),
Python (GeostatsPy; Pyrcz et al., 2021; PyGSLIB; https://opengeostat.
github.io/pygslib/; GSTools; Miiller et al., 2022), and R (geoR; Ribeiro
and Diggle, 2001). Although some GUIs exist, such as WinGslib (http://
www.statios.com/WinGslib/) and SGeMS (Remy et al., 2009), these
often involve numerous manual steps from data processing to
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visualization, making spatial prediction time-consuming and chal-
lenging for those without extensive knowledge of geostatistics. A lack of
automated features, like variogram auto-fitting, may introduce user
subjectivity and reduce accuracy. The ease of use, reactivity, inter-
activity, and automated features of sGs UnMix minimize user bias and
significantly reduce operational complexity while maintaining accu-
racy, thus reflecting a valuable alternative to these programs. In
particular, the app’s reactive outputs, such as maps that update instantly
with input changes, enable users to quickly identify spatial patterns and
investigate anomalies at multiple scales through interactive (rectangular
and polygonal) data selection. Additionally, sGs UnMix facilitates the
automated separation of data groups with the Mix model, which is
typically lacking in current geostatistical tools. This feature enables
users to set thresholds for detecting anomalies in spatial geochemical
data distributions.

sGs UnMix facilitates spatial data analysis and prediction in multiple
geoscience fields. In volcanology, it provides a consistent approach for
assessing and comparing volatile emissions from volcanoes locally and
globally. By simplifying the application of sGs, the web app eliminates
the need for alternative interpolation techniques, such as inverse dis-
tance weighting and kriging, which can underestimate volatile fluxes. At
the local scale, the web app can be applied not only to investigate the
degassing and its structural control, such as faults, but also to monitor
their variations over time for volcanic surveillance (e.g., Cardellini et al.,
2017). Locally, sGs UnMix can also support geothermal exploration by
coupling soil CO5 emissions and temperature maps to estimate heat flow
(e.g., Chiodini et al., 2005, 2021a). The app standardized approach al-
lows for comparable volatile flux estimates across volcanoes globally,
contributing to more reliable regional and global outflux assessments.
This is critical for understanding the relationship between Earth
degassing and climate change (e.g., Lee et al., 2016; Brune et al., 2017)
and for mitigating environmental risks. Beyond volcanology and climate
remediation, the app can find many other important applications to
diverse fields, such as studying the distribution of ore deposits, hydro-
carbons, and pollutants in soils and freshwater systems, facilitating
targeted interventions.

6. Conclusions

We presented sGs UnMix, a web application written in shiny for R
(freely available online at https://apps.bo.ingv.it/sgs-unmix) designed
to make spatial data analysis and prediction accessible to a broad geo-
science audience. Its user-friendly interface, automated workflows, and
interactive outputs reduce user bias and technical complexity, sup-
porting reproducible results. sGs UnMix could be used as a standardized
method for studying volcanic volatile fluxes (e.g., soil CO5 emissions),
but could also be applied across diverse geoscience fields, including
environmental monitoring, climate research, and resource exploration.
Although sGs UnMix has been shaped with a straightforward structure
and interface, it offers potential for future enhancements to meet the
needs of advanced users. The source code and future updates will be
available on its Git repository (https://github.com/giancarlotambu
rello/sGs_UnMix.git) ensuring ongoing development and accessibility.
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Appendix A. Variogram models used in the sGs UnMix

sGs UnMix offers seven variogram models to fit the empirical semivariogram, that is spherical, exponential, pentaspherical, gaussian, circular,
linear, and bessel (Pebesma et al., 2004). These models and their equations are reported in Figure A.1 and Table A.1.
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Table A.1

Environmental Modelling and Software 193 (2025) 106652

variogram models and their equations (after Pebesma et al., 2014) included in sGs UnMix. Cy, C, h, and a refer
to the variogram nugget, sill, lag distance, and range, respectively.

Model Equation
Spherical 3h K
= — | ifh<
1(h) = Co +(C~Co) |5 —55| fh<a
r(h) =Co+(C—Co), fh>a
Exponential h
i (h) =Co+(C*Co)[1*€XP(*E>]
Pentaspherical [15h 5K3 3RS
_ _ e Tl ifh<
y(h) = Co + (C—Co) 8a A& +8a5 ,ifh<a
y(h)=Co+(C—Co), fh>a
Gaussian R\ 2
#(h) = o+ (¢ - o) [1 - e (- (%))
Circular [ 2
2h h 2 h
— — = 1=z Zarcsin—|, ifh <
y(h) = Co + (C—Cyp) wa 1 (a) +”arcsma:| Jifh<a
7(h) = Co +(C~Co), ifh>a
Bessel
csse y(h) = Co + (C—Cp) [l —ng (g)] , where Jj is the Bessel function of the first kind
Linear y(h) = Co + bh, where b is the slope
Data availability Chiodini, G., Baldini, A., Barberi, F., Carapezza, M.L., Cardellini, C., Frondini, F.,
Granieri, D., Ranaldi, M., 2007. Carbon dioxide degassing at latera caldera (italy):
. . evidence of geothermal reservoir and evaluation of its potential energy. J. Geophys.
Test data are available at https://github.com/ Res. Solid Earth 112 (B12).

giancarlotamburello/sGs_UnMix
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