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A B S T R A C T

Spatial data analysis and prediction are fundamental in geoscience for mapping continuous variables and sup
porting decision-making. However, traditional geostatistical tools often require programming skills or involve 
manual, subjective steps. Here, we developed sGs UnMix, an interactive web application that simplifies spatial 
prediction workflows and reduces subjectivity in statistical analysis, making it accessible to the entire geoscience 
community. sGs UnMix (available online at https://apps.bo.ingv.it/sgs-unmix) is built with the shiny package for 
R and is organized into four main panels, which allow data loading and coordinate projection, data separation 
through mixture modeling, variogram modeling, and spatial prediction using sequential Gaussian simulation 
(sGs). Automated variogram fitting and mixture modeling reduce user bias, while dynamically updated heat 
maps enable real-time visualization of spatial patterns. sGs UnMix provides not only a standardized approach for 
estimating volcanic volatile fluxes (e.g., soil CO2 emissions) but also applications in ore deposit mapping, hy
drocarbon exploration, environmental monitoring, and climatology. Compared to existing geostatistical tools, it 
offers automation, interactivity, and a platform-independent, standalone web-based solution for geoscientists.

1. Introduction

The statistical analysis of spatial data is crucial for understanding 
spatial and spatiotemporal phenomena, playing an integral role across 
various fields in geosciences. Many of the foundational techniques for 
spatial data analysis were first developed in the context of mineral 
resource exploration. One such technique, kriging, was pioneered by 
Georges Matheron in the 1960s (Matheron, 1962, 1963), drawing 
inspiration from the work of South African mining engineer Daniel Krige 
(1951). Kriging is an interpolation technique widely used to estimate 
values at unsampled locations based on spatially distributed data. It is 
grounded in the concept of the variogram, which quantifies the spatial 
continuity of the data as a function of distance, thereby providing a 
mathematical framework for making spatial estimation and prediction 
(Matheron, 1963a,b). However, kriging tends to produce smoothed es
timates that underestimate spatial variability (Journel and Huijbregts, 
1978). To overcome this limitation, more sophisticated techniques, such 
as Sequential Gaussian Simulation (sGs from now on), have been 
developed (Journel and Alabert, 1989). sGs preserves both the variance 
and spatial continuity of the data by incorporating multiple realizations 
of spatially distributed values, making it more suitable for spatial 

prediction (Pyrcz and Deutsch, 2014).
Spatial prediction using sGs has found applications far beyond 

mining, becoming essential in reservoir modeling and several soil- 
science related fields, including environmental science, climatology, 
agriculture, public health, hydrology, and natural resource manage
ment. In environmental science, sGs has been applied to model the 
distribution of soil contaminants, such as cadmium, providing more 
realistic risk maps (Goovaerts, 1997). In agriculture, sGs has been used 
to map soil nutrients, such as potassium (Webster and Oliver, 2007), 
enabling precision farming practices and better resource management. 
Mapping of soil properties with sGs, such as pH, has been also performed 
to study the effect of urbanization on land (Sun et al., 2013). Public 
health applications include predicting heavy metal concentrations in 
topsoil and calculating the carcinogenic health-risk level for each node 
of the grid (Özen et al., 2022). sGs has been applied in hydrology to map 
the soil water content to identify areas prone to surface runoff and 
erosion (Delbari et al., 2009) and in petroleum reservoir modeling to 
estimate porosity and permeability for hydrocarbon recovery (Pyrcz and 
Deutsch, 2014).

Spatial prediction using sGs has also become indispensable for vol
cano monitoring and geothermal exploration, especially for mapping 
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soil CO2 fluxes (Cardellini et al., 2003). As CO2 is the second most 
abundant gas emitted by volcanoes (after H2O), and a significant portion 
of it escapes through soil diffusion (Fischer et al., 2019; Werner et al., 
2019), accurate measurements and spatial prediction is essential for 
quantifying volcanic CO2 emissions and understanding the degassing 
extent. Furthermore, the spatial correlation between soil temperature 
and CO2 flux maps constructed with sGs has proven particularly useful 
for locating upflow zones in geothermal systems, providing a valuable 
tool for geothermal energy exploration (Chiodini et al., 2005, 2021a). 
Cardellini et al. (2003) first applied sGs to soil CO2 emission data to map 
volcanic structures, such as faults and craters, which serve as pathways 
for gas escape, and estimate CO2 emissions from various volcanoes, 
including Campi Flegrei (Italy), Vesuvius (Italy), and Nisyros (Greece). 
Despite its advantages, sGs has not been entirely adopted within the 
volcanological and geological communities, mainly due to the solid 
understanding of geostatistical principles needed. As a result, interpo
lation methods like inverse distance weighting (IDW) or kriging have 
sometimes been preferred (e.g., Carapezza et al., 2011; Tarchini et al., 
2019; Gurrieri et al., 2023; Taussi et al., 2023; Tardani et al., 2024). 
Although these methods find useful applications in some circum
stances–e.g., IDW is commonly used when data do not show spatial 
correlation (i.e., the variogram only displays the nugget effect)–, they 
fail to accurately reproduce data variance and spatial continuity, leading 
to the underestimation of volcanic CO2 flux and degassing extent (e.g., 
Lewicki et al., 2005). This inconsistent application of methods un
derscores the need for a standardized approach to processing soil CO2 
emission data, ensuring that total flux estimates are comparable across 
different volcanoes.

While open-source geostatistical software packages such as GSLIB 
(Deutsch and Journel, 1998) offer powerful tools for spatial modeling, 
they can require programming knowledge in languages like Fortran, 
Python, or R. Even graphical user interface (GUI)-based tools, while 
somewhat more user-friendly, can be cumbersome for those without a 
deep understanding of geostatistics. Additionally, many of these plat
forms lack automated features, such as auto-fitting variograms, which 
introduces operator subjectivity and can affect the accuracy of results. 
These barriers have made advanced geostatistical tools, including sGs, 
inaccessible to part of the geoscience community. To address these 
challenges, we developed sGs UnMix, a user-friendly, interactive web 
application that simplifies the process of spatial prediction using sGs. 
While the app does not eliminate the need for critical interpretation, it is 
designed to guide users—regardless of programming experience—
through the modeling process in an intuitive and transparent way, 
helping them to better explore and valorize their datasets. The web app 
is structured around five interactive panels, guiding users from data 
upload to the generation of mean and probability maps. Users can 
choose between an automated variogram fitting procedure based on 
least-squares or a manual adjustment, with real-time updates displayed 
on variogram and density plots. The app also provides interactive maps 
overlaid on GIS-layers, enabling users to visualize the spatial distribu
tion of predicted values, identify anomalies, and gain deeper insights 
into the processes underlying spatial data patterns. This tool offers a 
faster, more intuitive approach to decision-making in resource explo
ration, volcano monitoring, environmental risk assessment, and beyond.

2. Methods

sGs UnMix has been designed with shiny (https://shiny.posit.co), an 
online platform that enables the creation of web applications based on 
the R programming language (https://www.r-project.org). sGs UnMix is 
available online at https://apps.bo.ingv.it/sgs-unmix. The web app is 
based on four modulus, and each of these relies on fundamental concepts 
of geostatistics needed to unmix different populations of data within the 
total spatial distribution, modeling the spatial continuity of the data 
with the variogram, and performing spatial prediction with sGs. To these 
scopes, sGs UnMix uses several R packages, which are listed in Table 1.

2.1. Unmixing lognormal populations of data

The distribution of the variable we want to predict at unsampled 
locations in the space can reflect the mixing of two or more populations 
of data, potentially indicating different data sources. For example, soil 
CO2 flux data often reflect the overlapping of two lognormal pop
ulations, characterized by low and high flux values, reflecting the 
background, biogenic gas release and the magmatic-hydrothermal CO2 
coming from depth. Unmixing of these populations has been treated in 
the literature with the method of Sinclair (1974), which was used in the 
Graphical Statistical Approach (GSA; Chiodini et al., 1998) to disen
tangle biogenic and magmatic soil CO2 flux populations and compute 
the respective total emission into the atmosphere (t d− 1). In sGs UnMix, 
we implemented the normalmixEM function of the mixtools package for 
R (Benaglia et al., 2009). This function uses an 
Expectation-Maximization (EM) algorithm, which alternates between 
estimating the probability of each data point belonging to each popu
lation (E-step) and updating the parameters describing each population 
(means, variances, and mixing proportions) to maximize the likelihood 
(M-step). This iterative process is able to automatically separate the data 
into two or more individual populations. In case of lognormal pop
ulations, sGs UnMix then uses a Monte Carlo simulation to calculate the 
mean and standard deviation of each population (e.g., Chiodini et al., 
2015). In particular, this process involves drawing a random sample, 
equal in size to the original dataset, from each population identified by 
the EM algorithm. Each value in the sample is raised to the power of 10, 
and the average of these transformed values is computed. This operation 
is repeated 5000 times, generating 5000 mean values. From these, the 
overall mean and standard deviation of the population are calculated.

2.2. Modeling the spatial continuity of the data with the variogram

Since spatial prediction is performed through sGs, sGs UnMix first 
transforms the data from real space to Gaussian space. All the following 
calculations are performed on the transformed data. The spatial conti
nuity of the data is measured through the semivariance (Matheron, 
1963a,b) 

γ(h)=
1

2N(h)
∑N(h)

α=1
(z(uα) − z(uα + h))2 (1) 

Table 1 
R packages used by sGs UnMix.

R Package Authors Link

shiny Chang et al. (2024) https://cran.r-project.org/package=sh 
iny

sp Pebesma and Bivand 
(2005); 
Bivand et al. (2013)

https://cran.r-project.org/package=sp

splancs Rowlingson and Diggle 
(2024)

https://cran.r-project.org/package 
=splancs

fields Nychka et al. (2021) https://github.com/dnychka/field 
sRPackage.

raster Hijmans (2024a) https://cran.r-project.org/package=ra 
ster

terra Hijmans (2024b) https://cran.r-project.org/p 
ackage=terra

gstat Pebesma (2004) https://cran.r-project.org/p 
ackage=gstat

leaflet Cheng et al. (2024) https://cran.r-project.org/package=le 
aflet

leaflet.extras Gatscha et al. (2024) https://cran.r-project.org/package=l 
eaflet.extras

leaflet. 
providers

Huang (2023) https://cran.r-project.org/package=le 
aflet.providers

DT Xie et al. (2024) https://cran.r-project.or 
g/package=DT

mixtools Benaglia et al. (2009) https://cran.r-project.org/packa 
ge=mixtools
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which expresses half of the average squared difference of values sepa
rated by a distance equal to h, the lag distance, where z(uα) is the value 
at location α and N(h) is the number of pairs for lag distance h. The lag 
distance is automatically calculated by taking into account the geometry 
of the grid (Pebesma, 2004), but it can also be manually chosen to ensure 
a variogram calculation with a large number of pairs for each lag. sGs 
UnMix uses the variogram function of the gstat package (Pebesma, 2004) 
and plots not only the variogram (Fig. 1) but also the variogram cloud 
that represents all the possible square differences of values separated by 
distance h. This diagram can be particularly informative in locating 
potential outliers showing high semivariance at short distances, which 
results in a significant nugget effect, affecting the spatial continuity of 
the data (see Example #2 in the Supplementary Material). In such cir
cumstances, a robust variogram estimator is preferred (Cressie, 1993) 

γ(h)=

1
2

(

1
N(h)

∑N(h)

α=1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
|z(uα) − z(uα + h)|

√
)4

0.457 + 0.494
N(h)

(2) 

The spatial continuity of the data is then modeled by fitting the 
empirical variogram with a specific variogram model (Table A.1) that 
minimizes a weighted sum of squared errors (SSE; Pebesma, 2004) 

∑n

j=1
wj
(

γ̂
(
hj
)
− γ
(
hj
))2 (3) 

where j is the number of lag distance at which γ(h) is calculated, wj is the 
weight equals to N(h)j/hj

2, and γ̂(h) is the semivariance of the fitted 
variogram model. For this operation, sGs UnMix uses the fit.variogram 
function of the gstat package (Pebesma, 2004) and returns the calcu
lated nugget, range, and sill, which reflect the structure of the variogram 
model (Fig. 1). Such components may be adjusted in sGs UnMix by 
switching from automatic to manual mode.

2.3. Spatial prediction through sequential Gaussian simulations (sGs)

sGs UnMix incorporates the variogram model to perform spatial 
prediction through sGs using the krige function of the gstat package 
(Pebesma, 2004). The transformed data are distributed over the grid, 

and a random path is defined. The algorithm searches for 40 nearby 
measured and previously simulated data at each location along this 
path. These data are processed with ordinary kriging, an interpolation 
technique that relies on linear weights attributed to the data, which 
account for spatial continuity, data closeness, and redundancy. Ordinary 
kriging (OK) was chosen over simple kriging (SK) because it does not 
assume a known global mean, instead estimating the local mean from 
neighboring data. This is advantageous for datasets where the mean 
varies spatially or is poorly known, such as CO2 emissions from volcanic 
soils. This step enables the algorithm to construct a normal distribution 
with a mean equal to the kriging estimate and variance equal to the 
kriging variance. The simulated value is drawn from this normal dis
tribution with a Monte Carlo simulation and added to the random 
location of the grid. Extracting the simulated value from this distribution 
accurately reproduces the data variance, which would be under
estimated if we relied solely on the kriging estimate. This procedure is 
then repeated across all locations of the random path, progressively 
including the simulated values in the simulations. By considering pre
viously simulated values as data, the algorithm preserved the covariance 
structure of the entire dataset. After all grid nodes are populated with 
simulated values, all the data are back-transformed to the real space, 
producing the first realization. The algorithm repeats this procedure for 
n realizations, following a different random path each time, resulting in 
different simulated values. All realizations are equiprobable, and aver
aging them provides an estimate of uncertainty.

3. sGs UnMix data processing

sGs UnMix can be used online at https://apps.bo.ingv.it/sgs-unmix. 
It consists of five tab panels: Load data, Data, Mix model, Variogram, and 
sGs. The Data panel shows data in a table on the left and a summary and 
histogram of a selected variable on the right. The remaining four panels 
consist of a left sidebar for inputs and a large main area for outputs, such 
as figures and tables. The sidebars contain several fields and a Help 
button showing a brief description to guide the user.

3.1. Load data tab panel

In the sidebar of this panel (Fig. 2), the user needs to upload a .csv file 
with coordinates (longitude and latitude) and a continuous variable, 
separated by comma, semicolon, or tab. The choice of separator needs to 
be made before uploading the file. To ensure user privacy, all uploaded 
data are processed locally and are not stored on any server; data are 
automatically discarded when the session ends or the browser is 
refreshed. Then, through the Select columns field, the user must specify 
the longitude, latitude, and the continuous variable (in this order) used 
for spatial prediction. The geodetic datum of the coordinate system must 
be specified as an EPSG code (available at https://epsg.io). If longitude 
and latitude are decimal WGS84, only the Output EPSG field has to be 
filled with the corresponding EPSG code. Otherwise, if the coordinates 
are not decimal WGS84, only the Input EPSG field must be compiled. The 
spatial points are plotted on a GIS layer (Esri World Imagery by default) 
and colored with a viridis gradient to have a first glance at the spatial 
variability of the data (Fig. 2a). The color scale can be switched from 
logarithmic to raw data through a radio button in the panel on the right 
side of the map, along with others color palette. The user can navigate 
into the interactive world map and choose the preferred GIS-layer be
tween ESRI World Imagery and OpenStreetMap through a layer selec
tion button on the left side of the map. In addition, one can measure 
distances or areas through the rectangle above the layer selection on the 
left side of the map. Last, the user has to draw a perimeter on the map to 
enclose the data to process (Fig. 2b). This can be done by drawing a 
rectangle or a polygon through the buttons below the layer selection. 
Alternatively, a .csv with the vertices of a polygon can be uploaded (and 
downloaded). The Remove polygon button can remove the uploaded 
polygon to define a new perimeter.

Fig. 1. Empirical variogram (circles) and spherical variogram model (solid 
line) fitted through weighted least squares. The variogram model is composed 
of a nugget, sill, and range. The nugget is the semivariance at zero distance, 
accounting for measurement errors or spatial variation at scales smaller than 
the sampling distance. The range is the distance beyond which observations are 
no longer correlated. The sill reflects the total variance, where the spatial 
correlation ceases–typically at the range. In this example, the nugget and sill are 
0.23 and 1, respectively, and the range is 310 m.
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3.2. Mix model tab panel

This panel (Fig. 3) enables the total density distribution of the data to 
be unmixed into two or more individual populations, which could reflect 
different data sources. By default, the sidebar panel is set on an automatic 
fitting procedure, that is sGs UnMix considers the distribution of the data 
as made by two lognormal populations and their means, standard de
viations, and proportions are calculated using the EM-algorithm by 
maximizing the log-likelihood (section 2.1). Data distribution can be 

changed from lognormal to normal, enabling one to work with negative 
values. The user can change the Number of populations in automatic mode 
or can decide to manually fit the distribution by switching to Manual fit 
and specifying the parameters defining each individual population in the 
Mean and St. dev. fields, and pressing the Calculate populations button. 
Alternatively, the user can specify initial parameters using the Initial 
Guess mode, which is then accommodated by the web app to find the 
best solution. The log-likelihood output in the sidebar panel provides a 
measure of the goodness of fit, whose higher the value, the better the fit. 

Fig. 2. Screenshot of the Load data tab panel of sGs UnMix showing (a) soil CO2 fluxes (in g m− 2 d− 1) from Campi Flegrei (Italy) over the ESRI World Imagery layer 
and (b) the polygon drawn to enclose data for spatial analyses.
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To help select the proper number of populations while avoiding over
fitting, the user can calculate information criteria, such as the Akaike 
Information Criterion (Akaike, 1973). The parameters defined for each 
population are printed at the bottom of the sidebar and the results are 
displayed in the main area of the tab panel as density and Q-Q (Quan
tile-Quantile) plots. The Q-Q plot is a graphical tool used to compare the 
distribution of a dataset to a theoretical distribution. A single normal 
distribution appears as a 45◦ line in the Q-Q plot, whereas n normal 
populations result in n lines combined by n–1 inflection points. Both 
density and Q-Q plots can be downloaded as PDF by selecting the Save 
Plot as PDF button.

3.3. Variogram tab panel

The spatial continuity of the transformed data is modeled in this 
panel (Fig. 4), which is divided in two subpanels for modeling both 
omnidirectional (Fig. 4a) and anisotropic variograms (Fig. 4b). By 
default, the variogram is omnidirectional and calculated using a 
spherical model through an autofitting procedure, which is based on the 
minimization of a weighted sum of square residuals (section 2.2). Re
sults are displayed as a table and variogram and variogram cloud in the 
main area of the tab panel (Fig. 4a). The user is required to choose a 
model from the variogram model field (see Figure A.1 and Table A.1 for a 
list of the available models) that minimizes the weighted sum of squared 
errors (SSE, printed in the sidebar), which provides a measure of the 
goodness of fit. The automatic lag distance is calculated using a formula 
depending on the density of the data over the grid and its geometry 
(principal diagonal of the polygon divided by 45; Pebesma, 2004) and is 
printed in the sidebar panel. The app uses it as a starting input. Then, the 
average distance at which semivariances are calculated and the 
respective number of pairs (N(h)) used are displayed in the table on the 
right side of the main panel. If the number of pairs (N(h)) for the lag 
distance (h) is small (N(h) > 30 is recommended; Journel and Huij
bregts, 1978), the user can manually insert it in the Lag distance field 
while remaining in autofit mode. If outliers exist within the data set, the 
variogram cloud shows data clusters with high semivariance at short 
distances. These outliers would drastically raise the nugget of the var
iogram. In such a case, the user is advised to enable the Robust variogram 
field or manually remove the outliers (see Example #2 in the Supple
mentary Material). Finally, the user can manually fit the variogram by 
switching from the Automatic to Manual fit field and adjusting the 

structure of the variogram by providing numeric inputs into the Nugget, 
Partial sill, and Range fields in the sidebar. The variogram plots are 
reactive to changes in the input of the variogram parameters, updating 
the empirical variogram fit in real-time. In addition to modeling a single 
variogram, the app offers a Nested option that allows users to model data 
structures resulting from the sum of two variograms. As for the Single 
selection, the Nested option supports both Automatic and Manual modes. 
Both table and variogram plot can be downloaded as .csv and PDF, 
respectively, by clicking the Save Table as CSV and Save Plot as PDF 
buttons.

The anisotropic subpanel (Fig. 4b) allows users to model directional 
variograms in manual mode. By default, N (0◦), NE (45◦), E (90◦), and SE 
(135◦) directions are selected. A variogram map is plotted in the main 
panel to help identify preferential directions, which can then be entered 
into the Direction input field (separated by commas). Variograms 
computed along these four directions (using an angle tolerance of 22.5◦) 
are displayed below the variogram map. Users must specify the principal 
direction (Main dir), defined as the direction with the largest range, and 
the anisotropy ratio (Ratio), calculated as the ratio between the range in 
the direction perpendicular to the principal direction (minor range) and 
the range in the principal direction (major range). By default, Main Dir is 
set to 45◦ and Ratio is set to 0.4. Finally, the variogram parameter
s—nugget, partial sill, and range (defined with respect to the main 
direction)—has to be adjusted to minimize the Sum of Squared Errors 
(SSE).

An example of directional variogram modeling is provided in the 
Supplementary Material (Example #4). This example also demonstrates 
the modeling of nested variograms.

3.4. sGs tab panel

This panel enables the user to perform spatial prediction through 
sequential Gaussian simulation (sGs; section 2.3; Fig. 5). The sidebar of 
this panel shows a summary of the grid extent in m (X min, X max, Y min, 
and Y max fields), the extent of the cell (in m) over which perform sGs 
(Delta X and Delta Y fields), and the Number of simulations field. By 
default, the cells have 10 × 10 m spacing, and the algorithm performs 
100 sGs, but the user can adjust these values as desired. Once these 
parameters have been set up, the simulations start by clicking the Run 
sGs button. After a few seconds, the result is plotted in the main panel as 
a heat map of the mean values of the n number of simulations, 

Fig. 3. Screenshot of the Mix model tab panel of sGs UnMix showing the unmixing of the data enclosed within the polygon (Fig. 2b) into two lognormal populations. 
These two populations returned from the automatic unmixing mode are plotted in density and Q-Q plots, and their means and standard deviations are plotted at the 
bottom of the sidebar. Lambda refers to the proportion of each population contributing to the total data distribution.
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Fig. 4. Screenshot of the Variogram tab panel of sGs UnMix showing the (a) omnidirectional and (b) anisotropic subpanles. (a) The omnidirectional subpanel shows 
the variogram and variogram cloud of Campi Flegrei soil CO2 fluxes, automatically fitted with a pentaspherical model through weighted least squares. (b) The 
anisotropic subpanel shows the variogram map and the variograms calculated along the N, SE, E, and SW directions (0◦, 45◦, 90◦, and 135◦).
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overlaying a GIS-based layer (Esri World Imagery by default). The user 
can then change the color scale (on the right side of the map) or adjust its 
minimum and maximum values and the transparency of the heat map by 
adjusting the Z min, Z max, and Opacity fields in the sidebar and clicking 
the button with the eye icon. These adjustments can improve the 
localization of the spatial distribution of patterns and their relationship 

with the area morphology, helping to understand possible sources and 
the processes driving spatial anomalies. This panel also enables calcu
lating the selected variable double integration over the area defined in 
the Load data panel and its uncertainty, which are printed at the bottom 
of the left side panel after pressing the Calculate 2D integral button. These 
values reflect the mean and standard deviation of the outputs estimated 

Fig. 5. Screenshot of the sGs tab panel of sGs UnMix showing the (a) mean and (b) probability heat maps of Campi Flegrei soil CO2 fluxes returned by averaging 200 
sGs. The total soil CO2 emission from Campi Flegrei has been calculated through the Calculate 2D integral button at the bottom of the sidebar, accounting for 1398 ±
120 t d− 1.
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for each n equiprobable realizations generated by sGs. In the case of soil 
CO2 flux data, or any other input variable measured in g m− 2 d− 1, sGs 
UnMix returns the total output and its standard deviation in g d− 1. In 
addition to a mean heat map, sGs UnMix calculates both error and 
probability heat maps. The error heat map shows the standard deviation 
calculated for each cell across the n number of simulations. The proba
bility heat maps indicates the likelihood that the target variable exceeds 
a specific threshold, which must be entered in the probability threshold 
field before clicking the run sGs button. To help choose the threshold, the 
user can inspect the populations disentangled from the total data dis
tribution in the Mix model tab. The user can visualize the error or 
probability heat maps by clicking the corresponding button with the eye 
icon and adjust the color scale and opacity as for the mean heat map. 
Finally, the Save raster button allows downloading mean, error, and 
probability heat maps as Tagged Image File Format (TIFF) for further 
elaborations on GIS software.

4. A case study: soil CO2 emission from Campi Flegrei, Italy

The Neapolitan area of Italy is populated by about four million 
people and includes three active volcanoes: Campi Flegrei, Somma- 
Vesuvius, and Ischia. This volcanic area has shown activity for at least 
the past 50,000 years, characterized by two significant eruptive events 
forming a ~15-km-wide caldera (Acocella et al., 2015). Since 2006, 
Campi Flegrei has shown increased seismicity, ground deformation, and 
degassing, reflecting a phase of volcanic unrest (Chiodini et al., 2021b). 
Hence, the measurement of the soil CO2 fluxes is fundamental to 
monitoring its activity (e.g., Cardellini et al., 2017) and has been part of 
the monitoring program of the Istituto Nazionale di Geofisica e Vul
canologia (INGV) since 1998.

In this example, we used the soil CO2 fluxes measured during one of 
these campaigns in July 2000 (cf_july2000.csv in the Supplementary 
Material; from Cardellini et al., 2017) in the target area of Campi Flegrei, 
which includes the Solfatara di Pozzuoli, a tuff cone where the onshore 
degassing focuses. In the sidebar of the Load data panel (Fig. 2), we 
specified comma as separator, uploaded the cf_july2000.csv, and 
selected the x, y, and CO2flux variables of the data set. Since the co
ordinates are in WGS84 and derived from the ED50 system rather than 
decimal format, we provided the corresponding EPSG: 23033 in the 
input EPSG. After this configuration, the measured points are plotted on 
the ESRI World Imagery layer and color coded with a gradient from 
purple to yellow as the CO2 flux increases (Fig. 2a). High flux mea
surements mainly concentrate in the Solfatara (grey area), with some 
also found in the northeast and southeast regions (Fig. 2a). Finally, we 
drew a polygon that tightly enclosed the measured data (Fig. 2b) over 
which the spatial prediction had to be performed.

The Mix model panel shows the distribution of the data enclosed 
within the polygon in density (black curve) and Q-Q plots (black circles; 
Fig. 3). The automatic fit reproduces this distribution through the mix
ing of two lognormal populations (red and green curves; Fig. 3). The 
low-CO2 flux population (red curve) has an average value of 25.6 ± 1.7 
g m− 2 d− 1, contributing for the 61 % of the distribution (Fig. 3), whereas 
the high-CO2 flux population (green curve) contributes for the 39 % of it, 
with an average value of 4181 ± 1310 g m− 2 d− 1. Notably, these esti
mates closely match those obtained by Cardellini et al. (2017)–23.9 ±
1.50 g m− 2 d− 1 (61 %) and 4590 ± 1351 g m− 2 d− 1 (39 %)–by using a 
manual fitting based on the method of Sinclair (1974), demonstrating a 
strong concordance between the two approaches. The low-CO2 flux 
population reflects the background emission from the soil, produced by 
biogenic activity, whereas the high-CO2 flux population mainly reflect 
the volcanic CO2 exsolved at depth from magmas. This step is funda
mental to discriminating the sources of CO2 and quantifying their 
average values (Chiodini et al., 1998), which can be used in the 
following steps to correct the volcanic output from nonvolcanic CO2 

contributions. In addition, the unmixing of populations helps us define 
the thresholds for the probability heat map calculation (Cardellini et al., 
2003) and, hence, better constrain the spatial distribution of the sole 
volcanic CO2 degassing. To this end, we can use as threshold 50 g m− 2 

d− 1, which corresponds approximately to the 90th percentile of the 
biogenic population. We can then calculate the probability of a value to 
be higher than this threshold, hence only considering the volcanic CO2 
emission – less than 10 % of the data belong to the biogenic population. 
It is important to underscore that there is not a standardized procedure 
to define thresholds above which calculating probability heat maps. 
Cardellini et al. (2003) indicated threshold values around the 90th 
percentile of the low-CO2 flux population. However, the only effective 
method to quantify the actual biogenic CO2 flux relies on the analyses of 
the C isotopes of the CO2 (Chiodini et al., 2008; Bini et al., 2020; Viveiros 
et al., 2020). In fact, biological processes produce CO2 with very nega
tive values of C isotopes, which can be unequivocally distinguished from 
those produced by magmatic outgassing. In this respect, it is noteworthy 
that the biogenic threshold of 50 g m− 2 d− 1 defined here corresponds to 
that estimated by Chiodini et al. (2008) for Campi Flegrei using C 
isotope analyses of CO2.

The variogram panel (Fig. 4a) displays the spatial continuity of the 
soil CO2 flux data measured in July 2000, which is autofitted using a 
pentaspherical variogram model with nugget = 0.2, partial sill = 0.8, 
and range = 354.8 m. This variogram model is slightly different than 
that employed by Cardellini et al. (2017)–spherical model with nugget 
= 0.26, partial sill = 0.74, and range = 330 m–but it better fits the 
empirical variogram, that is, the SSE is lower. The number of pairs (145) 
calculated at the first lag distance (28.3 m) is sufficient to ensure a 
reliable estimate of the semivariance. Hence, we used the provided Auto 
Lag distance (35.5 m) without manually increasing it in the Lag distance 
field (Fig. 4a). The variogram cloud does not show any cluster at short 
distances (Fig. 4a)––distances less than the first lag––indicating poten
tial outliers. In addition, the variogram map (Fig. 4b) does not exhibit 
clear anisotropy, suggesting that the omnidirectional variogram is an 
appropriate choice. Therefore, we proceed to the spatial prediction step.

To predict soil CO2 fluxes at unsampled locations of Campi Flegrei, 
we used cells of 5 × 5 m (Delta X and Delta Y) and 200 simulations 
(Fig. 5). In addition, we set the probability threshold at 50 g m− 2 d− 1, as 
estimated in the Mix model panel. Fig. 5a shows the map of the predicted 
soil CO2 fluxes over the ESRI World Imagery layer, where we set a color 
scale ranging from 20 to 1000 g m− 2 d− 1 (Z min and Z max) and a 
transparency (Opacity) of 0.6. The total emission of CO2 calculated by 
sGs UnMix accounted for 1398 ± 120 t d− 1 (from 1,22 km2) in July 2000 
and most of the degassing spatially distributed over the Solfatara area 
(Fig. 5a). Two other anomalies are also present in the southeast and 
northeast areas of the map (Fig. 5a), in correspondence of the Pisciarelli 
area, which, as Solfatara, is characterized by emission of hydrothermal 
fluids from argillic, altered soil through diffusion and as fumarolic vents. 
Both spatial distribution and total output of the soil CO2 emission esti
mated with sGs UnMix are practically identical to those reported by 
Cardellini et al. (2017). By adopting the parameters used by these 
authors–square polygon (cf_July2000_polygon_Cardellini_et_al_2017. 
csv), spherical variogram model with nugget = 0.26, partial sill = 0.74, 
and range = 330 m, and 100 sGs over 10 × 10 m cells–sGs UnMix yielded 
an estimate of 1501 ± 120 t d− 1, compared to 1513 ± 146 t d− 1 reported 
by Cardellini et al. (2017). To better understand the spatial distribution 
of the volcanic outgassing and better constrain the extent of different 
structures, we can switch to the probability heat map visualization 
(Fig. 5b). In this case, Fig. 5b shows the probability of soil CO2 flux 
higher than 50 g m− 2 d− 1 (from 0 to 1), that is the threshold defined 
using the 90th percentile of the biogenic population defined in the Mix 
model panel.

To estimate the volcanic emission of CO2, we multiplied the average 
value of the biogenic population of soil CO2 flux data (25.6 g m− 2 d− 1) 
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by the area of the grid (1,216,425 m2), and subtracted it (31.1 t d− 1) 
from the total emission, resulting in 1367 ± 120 t d− 1. Finally, we 
downloaded the raster from sGs UnMix. By processing rasters in GIS 
softwares and incorporating structural features like faults and craters, 
one can investigate the control of these on the soil CO2 flux (e.g. Fig. 4 in 
Cardellini et al., 2017).

Further examples of spatial data processing with sGs UnMix are re
ported in the Supplementary Material. The first example shows a case of 
zinc pollution in the topsoil of a flood plain of the river Meuse, using the 
meuse dataset of the sp package for R (Pebesma and Bivand, 2005; 
Bivand et al., 2013). The second and third examples illustrate the pro
cessing of other soil CO2 flux datasets. In particular, the Krafla case, 
Iceland (Bini et al., 2024), shows an example of how to deal with the 
presence of outliers by choosing robust variograms or removing them 
and how to manually unmix data populations. The case of the Nisyros 
caldera, Greece (Bini et al., 2019), shows how to search for different 
populations of data when the total distribution appears to follow only 
one lognormal distribution. In addition, this case provides a good spatial 
distribution of different structures of volcanic degassing that contribute 
to the total CO2 emission. The fourth example shows heat maps of CO2 
soil emission from Latera, Italy (Chiodini et al., 2007), constructed using 
both nested and anisotropic variogram models.

5. Discussion

Through a straightforward four-step procedure, we developed an 
intuitive application to process spatial data and predict their distribution 
at unsampled locations across space. These steps are implemented in 
four interactive panels, which, helped by detailed descriptions, guide 
users through loading datasets and reprojecting coordinates, separating 
different data populations, modeling spatial continuity through vario
grams, and performing spatial predictions using sequential Gaussian 
simulations (sGs). Each panel has a left sidebar for input parameters and 
a central display area for output visualizations, such as plots and tables, 
which face the user to a user-friendly, interactive graphical interface. 
Tables and plots, such as variograms and maps of predicted values 
overlaid on GIS-layers, dynamically update in response to changes in 
input values. Additionally, the application allows users to download 
tables, high-resolution graphs suitable for scientific publications, and 
raster files compatible with GIS software like QGIS (https://qgis.org).

A key advantage of sGs UnMix is its automated approach to data 
population separation and variogram fitting. This implementation not 
only reduces the users’ subjectivity in statistical analysis, such as 
determining data sources and thresholds or mapping the spatial distri
bution of continuous variables, but also enhances the reproducibility of 
results. However, in some cases—such as when some populations are not 
automatically detected (see Example #2 in the Supplementary Material) 
or when variogram fitting overestimates data variance (i.e., when the sill 
exceeds 1)—it may be beneficial to provide users with a higher degree of 
control. This can be easily accomplished with sGs UnMix by switching 
from automatic to manual mode in the Mix model and Variogram panels.

The most significant advantage of sGs UnMix is that it does not 
require programming skills, software installation, or a high-performance 
computer, making it accessible to the broader geoscience community 
through an internet connection. This web app is a valuable alternative 
for variogram modeling and spatial prediction, comparable to other 
available codes such as FORTRAN (GSLIB; Deutsch and Journel, 1998), 
Python (GeostatsPy; Pyrcz et al., 2021; PyGSLIB; https://opengeostat. 
github.io/pygslib/; GSTools; Müller et al., 2022), and R (geoR; Ribeiro 
and Diggle, 2001). Although some GUIs exist, such as WinGslib (http:// 
www.statios.com/WinGslib/) and SGeMS (Remy et al., 2009), these 
often involve numerous manual steps from data processing to 

visualization, making spatial prediction time-consuming and chal
lenging for those without extensive knowledge of geostatistics. A lack of 
automated features, like variogram auto-fitting, may introduce user 
subjectivity and reduce accuracy. The ease of use, reactivity, inter
activity, and automated features of sGs UnMix minimize user bias and 
significantly reduce operational complexity while maintaining accu
racy, thus reflecting a valuable alternative to these programs. In 
particular, the app’s reactive outputs, such as maps that update instantly 
with input changes, enable users to quickly identify spatial patterns and 
investigate anomalies at multiple scales through interactive (rectangular 
and polygonal) data selection. Additionally, sGs UnMix facilitates the 
automated separation of data groups with the Mix model, which is 
typically lacking in current geostatistical tools. This feature enables 
users to set thresholds for detecting anomalies in spatial geochemical 
data distributions.

sGs UnMix facilitates spatial data analysis and prediction in multiple 
geoscience fields. In volcanology, it provides a consistent approach for 
assessing and comparing volatile emissions from volcanoes locally and 
globally. By simplifying the application of sGs, the web app eliminates 
the need for alternative interpolation techniques, such as inverse dis
tance weighting and kriging, which can underestimate volatile fluxes. At 
the local scale, the web app can be applied not only to investigate the 
degassing and its structural control, such as faults, but also to monitor 
their variations over time for volcanic surveillance (e.g., Cardellini et al., 
2017). Locally, sGs UnMix can also support geothermal exploration by 
coupling soil CO2 emissions and temperature maps to estimate heat flow 
(e.g., Chiodini et al., 2005, 2021a). The app standardized approach al
lows for comparable volatile flux estimates across volcanoes globally, 
contributing to more reliable regional and global outflux assessments. 
This is critical for understanding the relationship between Earth 
degassing and climate change (e.g., Lee et al., 2016; Brune et al., 2017) 
and for mitigating environmental risks. Beyond volcanology and climate 
remediation, the app can find many other important applications to 
diverse fields, such as studying the distribution of ore deposits, hydro
carbons, and pollutants in soils and freshwater systems, facilitating 
targeted interventions.

6. Conclusions

We presented sGs UnMix, a web application written in shiny for R 
(freely available online at https://apps.bo.ingv.it/sgs-unmix) designed 
to make spatial data analysis and prediction accessible to a broad geo
science audience. Its user-friendly interface, automated workflows, and 
interactive outputs reduce user bias and technical complexity, sup
porting reproducible results. sGs UnMix could be used as a standardized 
method for studying volcanic volatile fluxes (e.g., soil CO2 emissions), 
but could also be applied across diverse geoscience fields, including 
environmental monitoring, climate research, and resource exploration. 
Although sGs UnMix has been shaped with a straightforward structure 
and interface, it offers potential for future enhancements to meet the 
needs of advanced users. The source code and future updates will be 
available on its Git repository (https://github.com/giancarlotambu 
rello/sGs_UnMix.git) ensuring ongoing development and accessibility.
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Code availability

sGs UnMix is available online at: https://apps.bo.ingv.it/sgs-unmix.
The source codes are available for downloading at: https://github. 

com/giancarlotamburello/sGs_UnMix.
Contact: giulio.bini@ingv.it.
Program language: R.

Declaration of generative AI in scientific writing

The authors used ChatGPT to enhance readability and language 
clarity in preparing this work. Following this tool, they carefully 
reviewed and edited the content as necessary, assuming full re
sponsibility for the publication’s content.

Declaration of competing interest

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper.

Acknowledgments

We would like to thank Giovanni Chiodini (INGV-OV, Napoli, Italy) 
for useful discussions during the development of the web application. G. 
B. was supported by the European Union’s Horizon 2020 research and 
innovation program under grant agreement No 858092 (IMPROVE 
project). Finally, we thank two anonymous reviewers for their 
constructive comments.

Appendix. ASupplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.envsoft.2025.106652.

Appendix A. Variogram models used in the sGs UnMix

sGs UnMix offers seven variogram models to fit the empirical semivariogram, that is spherical, exponential, pentaspherical, gaussian, circular, 
linear, and bessel (Pebesma et al., 2004). These models and their equations are reported in Figure A.1 and Table A.1.

Figure A.1. Variogram models with nugget = 0.3, partial sill = 0.7, and range = 300 m
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Table A.1 
variogram models and their equations (after Pebesma et al., 2014) included in sGs UnMix. C0, C, h, and a refer 
to the variogram nugget, sill, lag distance, and range, respectively.

Model Equation

Spherical
γ(h) = C0 + (C − C0)

[
3h
2a

−
h3

2a3

]

, if h ≤ a 

γ(h) = C0 + (C − C0), if h ≥ a
Exponential

γ(h) = C0 + (C − C0)

[

1 − exp
(

−
h
a

)]

Pentaspherical
γ(h) = C0 + (C − C0)

[
15h
8a

−
5h3

4a3 +
3h5

8a5

]

, if h ≤ a 

γ(h) = C0 + (C − C0), if h ≥ a
Gaussian

γ(h) = C0 + (C − C0)

[

1 − exp
(

−

(
h
a

))2
]

Circular
γ(h) = C0 + (C − C0)

⎡

⎣2h
πa

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −

(
h
a

)2
√

+
2
π arcsin

h
a

⎤

⎦, if h ≤ a 

γ(h) = C0 + (C − C0), if h ≥ a
Bessel

γ(h) = C0 + (C − C0)

[

1 −
h
a
J1

(
h
a

)]

, where J1 is the Bessel function of the first kind

Linear γ(h) = C0 + bh, where b is the slope

Data availability

Test data are available at https://github.com/ 
giancarlotamburello/sGs_UnMix
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Matheron, G., 1962. In: Traité De Géostatistique Appliquée, vol. 1. Editions Technip, 
Paris. 

Matheron, G., 1963a. In: Traité De Géostatistique Appliquée, vol. 2. Le krigeage. Editions 
Technip, Paris. 

Matheron, G., 1963b. Principles of geostatistics. Econ. Geol. 58 (8), 1246–1266.
Müller, S., Schüler, L., Zech, A., Heße, F., 2022. GSTools v1. 3: a toolbox for geostatistical 

modelling in python. Geosci. Model Dev. (GMD) 15 (7), 3161–3182.
Nychka, D., Furrer, R., Paige, J., Sain, S., 2021. Fields: tools for spatial data. R package 

version 16.3,. https://github.com/dnychka/fieldsRPackage.
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